PythonでGoogle検索のデータを分析する➁

GoogleTrendsのデータをPythonで分析するパート2です。Pythonという意味ではパート➀とほぼ内容は同じです。今回は最近再度話題になっている仮想通貨のデータを取得して分析してみますという内容です。足元のビットコイン価格は200万円あたりで、2017年のビットコインバブルの高値圏で推移しています。果たして足元の価格上昇は2017年のバブルの様に崩壊するのか。それともまだまだこれからなのか。Google検索のデータによりバブル感、過熱感を推し量ろうと思います。

分析方法

Pythonのライブラリ「pytrends」を使って分析します。
まずはライブラリのインポート。

取得したデータをデータフレームとして扱うための「pandas」。可視化ライブラリの「matplotlib」。
そしてGoogleトレンドからデータを取得するAPI「Pytrends」。

続いてビットコイン価格を取得しておきます。データはInvesting.comでダウンロードできます。

続いて調べたい検索ワードをkw_listとしてリスト形式で指定します。今回はBitcoinとしています。続いて、検索条件を指定します。先ほどの検索ワードとしてkw_list。timeframeで期間の指定。今回は直近5年。geoで国を指定しますが、世界のデータを取得するため空白で指定しています。続いて、取得したデータをデータフレームとして格納します。

続いて、Google検索のデータとビットコイン価格をグラフ表示します。ここではmatplotlibを使用して2軸のグラフを描いています。

結果は図のようになりました。ビットコイン価格は2017年末の価格に迫りつつあるのに、Google検索数は当時の2割程度。チャートには過熱感はありますが、世の中盛り上がりに欠けています。これはまだまだバブルではありません。だって注目しているのは一部の人だけですから。これは、、価格崩壊するのはまだ先と考えてよいのではないでしょうか。

今後、2017年の様に誰もが注目することが再び起こるとするならば、ビットコインの価格は高値更新がされる事でしょう。

※この記事は、ビットコインへの投資を推奨するものではありません。筆者は仮想通貨を全くやっておりませんので、責任は負いかねます。

PythonでGoogle検索のデータを分析する➀

いよいよ米大統領選。
トランプ対バイデンです。
マーケットはバイデン大統領を織り込みに行っているなどと言われていますが、果たして本当にそうなのか。いやそうなんでしょうけど、、どんでん返しはないのか。疑ってしまいます。

Google検索のデータを見てみましょう。ということでPythonで分析してみます。

※この記事は大統領選の予想をするというよりは、Google検索のデータをPythonでいじってみましたという内容が主です。大統領選が気になるという方は、結果の部分だけお読みください。

分析方法

Pythonのライブラリ「pytrends」を使って分析します。
まずはライブラリのインポート。

取得したデータをデータフレームとして扱うための「pandas」。可視化ライブラリの「matplotlib」と日本語表示用の「FontProperties」。
そしてGoogleトレンドからデータを取得するAPI「Pytrends」。

続いて調べたい検索ワードをkw_listとしてリスト形式で指定します。今回はトランプとバイデンとしています。続いて、検索条件を指定します。先ほどの検索ワードとしてkw_list。timeframeで期間の指定。今回は直近7日間。geoで国を指定します。続いて、取得したデータをデータフレームとして格納し、グラフで表示します。

下馬評通り足元ではバイデンの方が多く検索されて盛り上がっていることがわかります。
ただ、こちらは日本での検索結果。続いて米国の検索データも確認します。先ほど"JP"で指定した部分を"US"に変更するだけです。

ん…?23日にバイデン優位となって以降トランプの方が上回ってます。そもそもの検索数が現大統領の方が多いというのはありますが、それにしても盛り上がってすらいないようです。続いて期間を3か月にして見てみます。"now 7-d"を"today 3-m"に変更して実行します。

こう見るとバイデンがじわじわと注目を浴びてきているのはわかります。ただトランプも負けてない。

続いて、大統領選は州ごとの選挙ですので、絶対数で見るよりも州ごとにみましょうという事で、州別に検索数を確認してみます。こちらは時系列にも取れますが、若干面倒なので、7日間のデータを一括で取得します。

州別のデータをデータフレームとして格納して、トランプの検索比率大なる順でソートします。

取得したデータには日本語表記で州名が記載されているので、フォントを設定します。※jupyternotebookのディレクトリ内にmeiryo.ttcファイルをコピーして置いてあります。
続いて、matplotlibでfigureサイズを設定して、横バーグラフを描きます。最初にトランプの比率、続いてバイデンの比率。
最後に州名をy軸に、タイトルを設定、凡例を設定して終了です。

おー。州ごとに出た。ふむふむ全体的にトランプの方が多いけど、やはり州によって違いますねー。
って、ん…?民主党の州がトランプを検索、共和党の州がバイデンを検索…
ふむ、なるほど。全然わからない。
自分の感覚的に応援しない人の事なんて調べる気にならないけど違うのか。

ちょっと州ごとのデータは見方がよくわからないけど、時系列データなんか見るとあっさり決まらないような気がしますね。
更に郵便投票などもありでグダグダ決まらず株価軟調。そこが仕込みどきですかねー。バイデン大統領決定で金利高、株やや高、ドル安なんてことを想定しておきますか。